Appendix 3.1

Contents.

- Differentiation of $\sin x$.
- The Sum Rule for derivatives.

•
$$\frac{dx^{-n}}{dx}$$
 for $n \in \mathbb{N}$ and $x \neq 0$.

- More Examples
- How **not** to prove the Product or Quotient Rules.
- How **not** to prove the Composite Rule for differentiation.
- Another proof of the Composite Rule for differentiation.

•
$$\frac{dx^{1/q}}{dx}$$
 for $x > 0$ and $q \in \mathbb{N}$.

1. Differentiation of $\sin x$. Looking back at Example 3.1.5 we find

$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \cos a \lim_{h \to 0} \frac{\sin h}{h} + \sin a \lim_{h \to 0} \frac{\cos h - 1}{h}.$$
 (6)

So we need to evaluate

$$\lim_{h \to 0} \frac{\sin h}{h} \text{ and } \lim_{h \to 0} \frac{\cos h - 1}{h}.$$

This was done in a previous section by considering the areas of triangles and sectors of circles. You might have been tempted, instead, to use L'Hôpital's Rule. For example

$$\lim_{h \to 0} \frac{\sin h}{h} = \lim_{h \to 0} \frac{\cos h}{1} = 1.$$

Yet to do this you need to know that the derivative of $\sin x$ is $\cos x$. This would lead to

$$\frac{d}{dx}\sin x = \cos x \stackrel{\text{L'Hôpital}}{\Longrightarrow} \lim_{h \to 0} \frac{\sin h}{h} = 1 \stackrel{\text{by (6)}}{\Longrightarrow} \frac{d}{dx}\sin x = \cos x.$$

A classic example of a circular argument.

2. Example 3.1.16 Prove the Sum Rule for derivatives.

Solution: Consider

$$\lim_{x \to a} \frac{(f+g)(x) - (f+g)(a)}{x-a} = \lim_{x \to a} \frac{f(x) + g(x) - f(a) - g(a)}{x-a}$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{x-a} + \lim_{x \to a} \frac{g(x) - g(a)}{x-a}$$

by the Sum Rule for Limits,

$$= f'(a) + g'(a).$$

Since these last two limits exist we justify the use of the Sum Rule for limits as well as proving that f + g is differentiable at a. Further

$$(f+g)'(a) = f'(a) + g'(a).$$

3. Let $n \in \mathbb{N}$ and $a \neq 0$ be given. For $x \neq 0$ consider

$$\frac{\frac{1}{x^n} - \frac{1}{a^n}}{x - a} = -\frac{1}{x^n a^n} \frac{x^n - a^n}{x - a}.$$

So by the rules for limits

$$\lim_{x \to a} \frac{\frac{1}{x^n} - \frac{1}{a^n}}{x - a} = -\frac{1}{\left(\lim_{x \to a} x^n\right) a^n} \lim_{x \to a} \frac{x^n - a^n}{x - a}$$
$$= -\frac{1}{a^{2n}} n a^{n-1} \quad \text{by the work done on } \frac{dx^n}{dx},$$
$$= -na^{-n-1}.$$

So

$$\left. \frac{dx^{-n}}{dx} \right|_{x=a} = -na^{-n-1}.$$

Yet $a \neq 0$ was arbitrary, hence

$$\frac{dx^{-n}}{dx} = -nx^{-(n+1)}$$

for all $x \neq 0$.

4. More Examples In an earlier Appendix the following functions were seen to be continuous on \mathbb{R} . Are they differentiable on \mathbb{R} ?

$$f_1(x) = \begin{cases} \frac{e^x - 1}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0. \end{cases} \qquad f_2(x) = \begin{cases} \frac{\sin \theta}{\theta} & \text{if } \theta \neq 0\\ 1 & \text{if } \theta = 0. \end{cases}$$
$$f_3(x) = \begin{cases} \frac{\cos \theta - 1}{\theta} & \text{if } \theta \neq 0\\ 0 & \text{if } \theta = 0. \end{cases} \qquad f_4(x) = \begin{cases} \frac{\cos \theta - 1}{\theta^2} & \text{if } \theta \neq 0\\ -\frac{1}{2} & \text{if } \theta = 0. \end{cases}$$
$$f_5(x) = \begin{cases} \frac{e^x - 1 - x}{x^2} & \text{if } x \neq 0\\ \frac{1}{2} & \text{if } x = 0. \end{cases}$$

By the Quotient Rule they are all differentiable for non-zero x or θ . At 0 we have to return to the definition. For example, for f_1 consider, for $x \neq 0$,

$$\frac{f_1(x) - f_1(0)}{x - 0} = \frac{\frac{e^x - 1}{x} - 1}{x} = \frac{e^x - 1 - x}{x^2} = f_5(x).$$

Thus

$$\lim_{x \to 0} \frac{f_1(x) - f_1(0)}{x - 0} = \lim_{x \to 0} f_5(x) = \frac{1}{2}$$

Hence f_1 is differentiable at 0 with $f'_1(0) = 1/2$.

For f_2 we would get

$$\frac{f_2(\theta) - f_2(0)}{\theta - 0} = \lim_{\theta \to 0} \frac{\sin \theta - \theta}{\theta^2}.$$

But then, what is

$$\lim_{\theta \to 0} \frac{\sin \theta - \theta}{\theta^2}?$$

There is no elementary way to evaluate this, so we will have to wait for later results.

I leave the other functions to students to consider.

5. Warning In the proof of the Product Rule

$$(fg)'(a) = f'(a) g(a) + f(a) g'(a)$$

we started by looking at the LHS, (fg)'(a). Do **not** start by looking at the RHS, for you are likely to write

$$f'(a) g(a) + f(a) g'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} g(a) + f(a) \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$
$$= \lim_{x \to a} \left(\frac{(f(x) - f(a)) g(a) + f(a) (g(x) - g(a))}{x - a} \right)$$

Though this is not wrong it is not going to simplify to (fg)'(a).

Similarly, to prove

$$\left(\frac{1}{g}\right)'(a) = -\frac{g'(a)}{g^2(a)},$$

we started by examining the LHS. Do not start by looking at the RHS, for you are likely to write

$$-\frac{g'(a)}{g^2(a)} = -\frac{1}{g^2(a)} \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = \lim_{x \to a} \frac{\frac{1}{g(a)} - \frac{g(x)}{g^2(a)}}{x - a}$$

Again this is not wrong but it is not going to simplify to (1/g)'(a).

6. A Warning Note on (3). You might be tempted to replace (3) by

$$\frac{f(g(x)) - f(g(k))}{x - k} = \frac{f(g(x)) - f(g(k))}{g(x) - g(k)} \left(\frac{g(x) - g(k)}{x - k}\right)$$
(7)

and try to say:

"let $x \to k$ for then $g(x) \to g(k)$ (since g is differentiable at k implies g is continuous at k). Then the right hand side of (7) tends to f'(g(a))g'(a), giving the Composite Rule."

But this would be **WRONG**, because (7) only holds when $x \neq a$ and $g(x) \neq g(k)$ and it might be the case that g(x) = g(k) for infinitely many x as $x \to k$. This is why the

$$\frac{f(g(x)) - f(g(k))}{g(x) - g(k)}$$

in (7) is replaced by $F_{\ell}(g(x))$ in (3).

7. Alternative proof of the Composite Rule for differentiation.

In MATH20132, Calculus of severable variables, this result is generalised to functions from \mathbb{R}^n to \mathbb{R}^m . The proof given in the notes does not generalise so I will give one here that does.

The usual definition that g'(k) exists can be written in the form

$$\lim_{t \to 0} \frac{g(k+t) - g(k) - tg'(k)}{t} = 0.$$

Write $r_1(t) = g(k+t) - g(k) - tg'(k)$ so $\lim_{t\to 0} r_1(t)/t = 0$. Similarly, write the definition that $f'(\ell)$ exists in the form

$$\lim_{u \to 0} \frac{f(\ell + u) - f(\ell) - uf'(\ell)}{u} = 0,$$

and let $r_2(u) = f(\ell + u) - f(\ell) - uf'(\ell)$, so $\lim_{u \to 0} r_2(u)/u = 0$.

Our aim is to show that

$$\lim_{w \to 0} \frac{\left(f \circ g\right)\left(k + w\right) - \left(f \circ g\right)\left(k\right)}{w} = g'(k) f'(\ell)$$

or

$$\lim_{w \to 0} \frac{(f \circ g) (k + w) - (f \circ g) (k) - wg'(k) f'(\ell)}{w} = 0$$

Writing

$$R(w) = (f \circ g)(k + w) - (f \circ g)(k) - wg'(k)f'(\ell)$$

the aim becomes to prove that $\lim_{w\to 0} R(w)/w = 0$.

We start with a rearrangement

$$R(w) = f(g(k+w)) - f(g(k)) - wg'(k) f'(\ell)$$

= $f(r_1(w) + \ell + wg'(k)) - f(\ell) - wg'v(k) f'(\ell)$
by definition of r_1 and $\ell = g(k)$
= $r_2(r_1(w) + wg'(k)) + (r_1(w) + wg'(k)) f'(\ell) - wg'(k) f'(\ell)$
by definition of r_2 ,
= $r_2(r_1(w) + wg'(k)) + r_1(w) f'(\ell)$.

Hence

$$\frac{R(w)}{w} = \frac{r_2(r_1(w) + wg'(k))}{w} + \frac{r_1(w)}{w}f'(\ell)$$

Go back to $\varepsilon - \delta$ definition of limits to finish the proof.

Let $\varepsilon > 0$ be given.

The definition of $\lim_{w\to 0} r_1(w)/w = 0$ implies there exists $\delta_1 > 0$ such that if $0 < |w| < \delta_1$ then

$$\left|\frac{r_1(w)}{w}\right| < \frac{\varepsilon}{2\left(1+|f'(\ell)|\right)} \quad \text{i.e.} \quad \left|\frac{r_1(w)}{w}f'(\ell)\right| < \frac{\varepsilon}{2}\frac{|f'(\ell)|}{\left(1+|f'(\ell)|\right)} < \frac{\varepsilon}{2}.$$
(8)

And the definition of $\lim_{w\to 0} r_2(w) / w = 0$ implies there exists $\delta_2 > 0$ such that if $0 < |w| < \delta_2$ then

$$\left|\frac{r_2(w)}{w}\right| < \frac{\varepsilon}{2\left(1+|g'(k)|\right)}, \quad \text{i.e.} \quad |r_2(w)| < \frac{\varepsilon}{2\left(1+|g'(k)|\right)} |w|. \tag{9}$$

Why this most complicated factor of (1 + |g'(k)|)? It is because (9) now gives

$$\left|\frac{r_2(r_1(w) + wg'(k))}{w}\right| < \frac{\varepsilon}{2(1 + |g'(k)|)} \frac{|r_1(w) + wg'(k)|}{w}.$$

We could use (8) to bound the r_1 factor in the right hand side, but instead we go back to the definition, choosing $\varepsilon = 1$ to find $\delta_3 > 0$ such that if $0 < |w| < \delta_3$ then

$$\left|\frac{r_1(w)}{w}\right| < 1$$
, i.e. $|r_1(w)| < |w|$.

Then for $0 < |w| < \min(\delta_2, \delta_3)$ we have

$$\left|\frac{r_2(r_1(w) + wg'(k))}{w}\right| < \frac{\varepsilon}{2(1 + |g'(k)|)} \frac{|w| + |wg'(k)|}{w} = \frac{\varepsilon}{2}, \quad (10)$$

the complicated factor has vanished!

Let $\delta = \min(\delta_1, \delta_2, \delta_3) > 0$ and assume $0 < |w| < \delta$. Then (8) and (10) combine in

$$\left|\frac{R(w)}{w}\right| \le \left|\frac{r_2(r_1(w) + wg'(k))}{w}\right| + \left|\frac{r_1(w)}{w}f'(\ell)\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

In this way we have verified the definition of $\lim_{w\to 0} R(w)/w = 0$.

8. Example 3.1.17 of *Inverse Rule*. For $q \in \mathbb{N}$ prove that

$$\frac{d}{dy}y^{\frac{1}{q}} = \frac{1}{q}y^{\frac{1}{q}-1},$$

for all y > 0.

•

Solution Here $g(y) = y^{1/q}$, which is the inverse function of $f(x) = x^q$ on $(0, \infty)$ (which we know has an inverse since f is strictly increasing and continuous on $(0, \infty)$). We know that $df(x)/dx = qx^{q-1}$, so

$$\frac{d}{dy}y^{\frac{1}{q}} = \frac{dg(y)}{dy} = \frac{1}{\frac{df(x)}{dx}\Big|_{x=g(y)}} = \frac{1}{qx^{q-1}\Big|_{x=y^{1/q}}} = \frac{1}{q}y^{\frac{1}{q}-1}.$$