Appendix 3.1

Contents.

- Differentiation of $\sin x$.
- The Sum Rule for derivatives.
- $\frac{d x^{-n}}{d x}$ for $n \in \mathbb{N}$ and $x \neq 0$.
- More Examples
- How not to prove the Product or Quotient Rules.
- How not to prove the Composite Rule for differentiation.
- Another proof of the Composite Rule for differentiation.
- $\frac{d x^{1 / q}}{d x}$ for $x>0$ and $q \in \mathbb{N}$.

1. Differentiation of $\sin x$. Looking back at Example 3.1.5 we find

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}=\cos a \lim _{h \rightarrow 0} \frac{\sin h}{h}+\sin a \lim _{h \rightarrow 0} \frac{\cos h-1}{h} . \tag{6}
\end{equation*}
$$

So we need to evaluate

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h} \text { and } \lim _{h \rightarrow 0} \frac{\cos h-1}{h} .
$$

This was done in a previous section by considering the areas of triangles and sectors of circles. You might have been tempted, instead, to use L'Hôpital's Rule. For example

$$
\lim _{h \rightarrow 0} \frac{\sin h}{h}=\lim _{h \rightarrow 0} \frac{\cos h}{1}=1 .
$$

Yet to do this you need to know that the derivative of $\sin x$ is $\cos x$. This would lead to

$$
\frac{d}{d x} \sin x=\cos x \stackrel{\text { L'Hôpital }}{\Longrightarrow} \lim _{h \rightarrow 0} \frac{\sin h}{h}=1 \stackrel{\text { by (6) }}{\Longrightarrow} \frac{d}{d x} \sin x=\cos x \text {. }
$$

A classic example of a circular argument.
2. Example 3.1.16 Prove the Sum Rule for derivatives.

Solution: Consider

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{(f+g)(x)-(f+g)(a)}{x-a} & =\lim _{x \rightarrow a} \frac{f(x)+g(x)-f(a)-g(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}+\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}
\end{aligned}
$$

by the Sum Rule for Limits,

$$
=f^{\prime}(a)+g^{\prime}(a) .
$$

Since these last two limits exist we justify the use of the Sum Rule for limits as well as proving that $f+g$ is differentiable at a. Further

$$
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a) .
$$

3. Let $n \in \mathbb{N}$ and $a \neq 0$ be given. For $x \neq 0$ consider

$$
\frac{\frac{1}{x^{n}}-\frac{1}{a^{n}}}{x-a}=-\frac{1}{x^{n} a^{n}} \frac{x^{n}-a^{n}}{x-a} .
$$

So by the rules for limits

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{\frac{1}{x^{n}}-\frac{1}{a^{n}}}{x-a} & =-\frac{1}{\left(\lim _{x \rightarrow a} x^{n}\right) a^{n}} \lim _{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a} \\
& =-\frac{1}{a^{2 n}} n a^{n-1} \quad \text { by the work done on } \frac{d x^{n}}{d x} \\
& =-n a^{-n-1} .
\end{aligned}
$$

So

$$
\left.\frac{d x^{-n}}{d x}\right|_{x=a}=-n a^{-n-1} .
$$

Yet $a \neq 0$ was arbitrary, hence

$$
\frac{d x^{-n}}{d x}=-n x^{-(n+1)}
$$

for all $x \neq 0$.
4. More Examples In an earlier Appendix the following functions were seen to be continuous on \mathbb{R}. Are they differentiable on \mathbb{R} ?
$f_{1}(x)=\left\{\begin{array}{cc}\frac{e^{x}-1}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0 .\end{array}\right.$
$f_{2}(x)=\left\{\begin{array}{cc}\frac{\sin \theta}{\theta} & \text { if } \theta \neq 0 \\ 1 & \text { if } \theta=0 .\end{array}\right.$
$f_{3}(x)=\left\{\begin{array}{cc}\frac{\cos \theta-1}{\theta} & \text { if } \theta \neq 0 \\ 0 & \text { if } \theta=0 .\end{array} \quad f_{4}(x)=\left\{\begin{array}{cl}\frac{\cos \theta-1}{\theta^{2}} & \text { if } \theta \neq 0 \\ -\frac{1}{2} & \text { if } \theta=0 .\end{array}\right.\right.$
$f_{5}(x)=\left\{\begin{array}{cl}\frac{e^{x}-1-x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2} & \text { if } x=0 .\end{array}\right.$
By the Quotient Rule they are all differentiable for non-zero x or θ. At 0 we have to return to the definition. For example, for f_{1} consider, for $x \neq 0$,

$$
\frac{f_{1}(x)-f_{1}(0)}{x-0}=\frac{\frac{e^{x}-1}{x}-1}{x}=\frac{e^{x}-1-x}{x^{2}}=f_{5}(x)
$$

Thus

$$
\lim _{x \rightarrow 0} \frac{f_{1}(x)-f_{1}(0)}{x-0}=\lim _{x \rightarrow 0} f_{5}(x)=\frac{1}{2} .
$$

Hence f_{1} is differentiable at 0 with $f_{1}^{\prime}(0)=1 / 2$.
For f_{2} we would get

$$
\frac{f_{2}(\theta)-f_{2}(0)}{\theta-0}=\lim _{\theta \rightarrow 0} \frac{\sin \theta-\theta}{\theta^{2}} .
$$

But then, what is

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta-\theta}{\theta^{2}} ?
$$

There is no elementary way to evaluate this, so we will have to wait for later results.

I leave the other functions to students to consider.
5. Warning In the proof of the Product Rule

$$
(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)
$$

we started by looking at the LHS, $(f g)^{\prime}(a)$. Do not start by looking at the RHS, for you are likely to write

$$
\begin{aligned}
f^{\prime}(a) g(a)+f(a) g^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} g(a)+f(a) \lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a} \\
& =\lim _{x \rightarrow a}\left(\frac{(f(x)-f(a)) g(a)+f(a)(g(x)-g(a))}{x-a}\right) .
\end{aligned}
$$

Though this is not wrong it is not going to simplify to $(f g)^{\prime}(a)$.
Similarly, to prove

$$
\left(\frac{1}{g}\right)^{\prime}(a)=-\frac{g^{\prime}(a)}{g^{2}(a)},
$$

we started by examining the LHS. Do not start by looking at the RHS, for you are likely to write

$$
-\frac{g^{\prime}(a)}{g^{2}(a)}=-\frac{1}{g^{2}(a)} \lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{1}{g(a)}-\frac{g(x)}{g^{2}(a)}}{x-a} .
$$

Again this is not wrong but it is not going to simplify to $(1 / g)^{\prime}(a)$.
6. A Warning Note on (3). You might be tempted to replace (3) by

$$
\begin{equation*}
\frac{f(g(x))-f(g(k))}{x-k}=\frac{f(g(x))-f(g(k))}{g(x)-g(k)}\left(\frac{g(x)-g(k)}{x-k}\right) \tag{7}
\end{equation*}
$$

and try to say:
"let $x \rightarrow k$ for then $g(x) \rightarrow g(k)$ (since g is differentiable at k implies g is continuous at k). Then the right hand side of (7) tends to $f^{\prime}(g(a)) g^{\prime}(a)$, giving the Composite Rule."

But this would be WRONG, because (7) only holds when $x \neq a$ and $g(x) \neq g(k)$ and it might be the case that $g(x)=g(k)$ for infinitely many x as $x \rightarrow k$. This is why the

$$
\frac{f(g(x))-f(g(k))}{g(x)-g(k)}
$$

in (7) is replaced by $F_{\ell}(g(x))$ in (3).

7. Alternative proof of the Composite Rule for differentiation.

In MATH20132, Calculus of severable variables, this result is generalised to functions from \mathbb{R}^{n} to \mathbb{R}^{m}. The proof given in the notes does not generalise so I will give one here that does.
The usual definition that $g^{\prime}(k)$ exists can be written in the form

$$
\lim _{t \rightarrow 0} \frac{g(k+t)-g(k)-t g^{\prime}(k)}{t}=0 .
$$

Write $r_{1}(t)=g(k+t)-g(k)-t g^{\prime}(k)$ so $\lim _{t \rightarrow 0} r_{1}(t) / t=0$. Similarly, write the definition that $f^{\prime}(\ell)$ exists in the form

$$
\lim _{u \rightarrow 0} \frac{f(\ell+u)-f(\ell)-u f^{\prime}(\ell)}{u}=0,
$$

and let $r_{2}(u)=f(\ell+u)-f(\ell)-u f^{\prime}(\ell)$, so $\lim _{u \rightarrow 0} r_{2}(u) / u=0$.
Our aim is to show that

$$
\lim _{w \rightarrow 0} \frac{(f \circ g)(k+w)-(f \circ g)(k)}{w}=g^{\prime}(k) f^{\prime}(\ell)
$$

or

$$
\lim _{w \rightarrow 0} \frac{(f \circ g)(k+w)-(f \circ g)(k)-w g^{\prime}(k) f^{\prime}(\ell)}{w}=0 .
$$

Writing

$$
R(w)=(f \circ g)(k+w)-(f \circ g)(k)-w g^{\prime}(k) f^{\prime}(\ell)
$$

the aim becomes to prove that $\lim _{w \rightarrow 0} R(w) / w=0$.
We start with a rearrangement

$$
\begin{aligned}
R(w)= & f(g(k+w))-f(g(k))-w g^{\prime}(k) f^{\prime}(\ell) \\
= & f\left(r_{1}(w)+\ell+w g^{\prime}(k)\right)-f(\ell)-w g^{\prime} v(k) f^{\prime}(\ell) \\
& \quad \text { by definition of } r_{1} \text { and } \ell=g(k) \\
= & r_{2}\left(r_{1}(w)+w g^{\prime}(k)\right)+\left(r_{1}(w)+w g^{\prime}(k)\right) f^{\prime}(\ell)-w g^{\prime}(k) f^{\prime}(\ell) \\
& \quad \text { by definition of } r_{2}, \\
= & r_{2}\left(r_{1}(w)+w g^{\prime}(k)\right)+r_{1}(w) f^{\prime}(\ell) .
\end{aligned}
$$

Hence

$$
\frac{R(w)}{w}=\frac{r_{2}\left(r_{1}(w)+w g^{\prime}(k)\right)}{w}+\frac{r_{1}(w)}{w} f^{\prime}(\ell) .
$$

Go back to $\varepsilon-\delta$ definition of limits to finish the proof.
Let $\varepsilon>0$ be given.
The definition of $\lim _{w \rightarrow 0} r_{1}(w) / w=0$ implies there exists $\delta_{1}>0$ such that if $0<|w|<\delta_{1}$ then

$$
\begin{equation*}
\left|\frac{r_{1}(w)}{w}\right|<\frac{\varepsilon}{2\left(1+\left|f^{\prime}(\ell)\right|\right)} \quad \text { i.e. } \quad\left|\frac{r_{1}(w)}{w} f^{\prime}(\ell)\right|<\frac{\varepsilon}{2} \frac{\left|f^{\prime}(\ell)\right|}{\left(1+\left|f^{\prime}(\ell)\right|\right)}<\frac{\varepsilon}{2} . \tag{8}
\end{equation*}
$$

And the definition of $\lim _{w \rightarrow 0} r_{2}(w) / w=0$ implies there exists $\delta_{2}>0$ such that if $0<|w|<\delta_{2}$ then

$$
\begin{equation*}
\left|\frac{r_{2}(w)}{w}\right|<\frac{\varepsilon}{2\left(1+\left|g^{\prime}(k)\right|\right)^{\prime}}, \quad \text { i.e. } \quad\left|r_{2}(w)\right|<\frac{\varepsilon}{2\left(1+\left|g^{\prime}(k)\right|\right)}|w| . \tag{9}
\end{equation*}
$$

Why this most complicated factor of $\left(1+\left|g^{\prime}(k)\right|\right)$? It is because (9) now gives

$$
\left|\frac{r_{2}\left(r_{1}(w)+w g^{\prime}(k)\right)}{w}\right|<\frac{\varepsilon}{2\left(1+\left|g^{\prime}(k)\right|\right)} \frac{\left|r_{1}(w)+w g^{\prime}(k)\right|}{w} .
$$

We could use (8) to bound the r_{1} factor in the right hand side, but instead we go back to the definition, choosing $\varepsilon=1$ to find $\delta_{3}>0$ such that if $0<|w|<\delta_{3}$ then

$$
\left|\frac{r_{1}(w)}{w}\right|<1, \quad \text { i.e. } \quad\left|r_{1}(w)\right|<|w| .
$$

Then for $0<|w|<\min \left(\delta_{2}, \delta_{3}\right)$ we have

$$
\begin{equation*}
\left|\frac{r_{2}\left(r_{1}(w)+w g^{\prime}(k)\right)}{w}\right|<\frac{\varepsilon}{2\left(1+\left|g^{\prime}(k)\right|\right)} \frac{|w|+\left|w g^{\prime}(k)\right|}{w}=\frac{\varepsilon}{2}, \tag{10}
\end{equation*}
$$

the complicated factor has vanished!

Let $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)>0$ and assume $0<|w|<\delta$. Then (8) and (10) combine in

$$
\left|\frac{R(w)}{w}\right| \leq\left|\frac{r_{2}\left(r_{1}(w)+w g^{\prime}(k)\right)}{w}\right|+\left|\frac{r_{1}(w)}{w} f^{\prime}(\ell)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

In this way we have verified the definition of $\lim _{w \rightarrow 0} R(w) / w=0$.
8. Example 3.1.17 of Inverse Rule. For $q \in \mathbb{N}$ prove that

$$
\frac{d}{d y} y^{\frac{1}{q}}=\frac{1}{q} y^{\frac{1}{q}-1},
$$

for all $y>0$.
Solution Here $g(y)=y^{1 / q}$, which is the inverse function of $f(x)=x^{q}$ on $(0, \infty)$ (which we know has an inverse since f is strictly increasing and continuous on $(0, \infty))$. We know that $d f(x) / d x=q x^{q-1}$, so

$$
\frac{d}{d y} y^{\frac{1}{q}}=\frac{d g(y)}{d y}=\frac{1}{\left.\frac{d f(x)}{d x}\right|_{x=g(y)}}=\frac{1}{\left.q x^{q-1}\right|_{x=y^{1 / q}}}=\frac{1}{q} y^{\frac{1}{q}-1} .
$$

